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CHAPTER 1. CONSTRUCTION LABOR PRODUCTIVITY MODELING 

LI Introduction 

Construction labor productivity variations are results of several factors. These factors can be 

grouped into three main categories : (1) Management related factors including project team, 

management control, methods and equipment, materials and tools availability, crew composition, 

work sequence, scheduled overtime, congestion (Figure 1.1), (2) project related factors including 

specifications, design features, crew size, repetition, site conditions, temperature, humidity, 

precipitation, and (3) labor related factors including incentives, morale, fatigue, unionized labor, 

quality of craftsmanship, absenteeism, and turnover (Borcherding and Alarcon 1991; Neil and Knack 

1984; Dalliva 1954). 

Construction productivity models explain productivity variations by the factors included in the 

model. These models are needed for construction planning, estimating, and scheduling. In planning, 

productivity models of controllable factors (such as crew size or scheduled overtime) are needed for 

maximizing labor productivity to achieve lower labor cost and shorter project duration. In 

estimating, productivity models are used to predict labor costs; and finally in scheduling, 

productivity models are needed to forecast activity durations. 

Although productivity modeling is an important part of construction planning, estimating, and 

scheduling, models developed so far are limited in explaining the variations of productivity. Most of 

these models included a single factor while neglecting the variations caused by other factors. 

Furthermore the models were based on a limited amount of data. Table 1.1 includes a list of 

construction labor productivity studies. Each of these studies and their limitations are discussed in 

d e t a i l  i n  S e c t i o n s  1 . 3  t o  l . l l .  
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Table 1,1 Construction Labor Productivity Studies 

Category Source(s) 

Adjustment Factors 

Work Sampling 

Weather 

Repetition 

Scheduled Overtime 

Expectancy Theory Mode! 

Action Response Model 

Expert Systems 

Factor Model 

Dallavia (1954), Neil (1982), Neil and Knack (1984) 

Thomas et al. (1984), Lieu and Borcherding (1986), 
Thomas (1991) 

Clapp (1966), "The effect" (1974), Grimm and Wagner 
(1974), Koehn and Brown (1985), Thomas and 
Yiakoumis (1987) 

"Effects" (1965), McClure et al. (1980a and 1980b) Ward and 
Thomas (1984), Thomas et al. (1986), Oglesby et al (1987) 

"Scheduled" (1980), "The Effects" (1988), Thomas (1992) 
"Effects" (1994) 

Maloney(1981 and 1986), 
Maloney and McFillen (1985, 1986 and 1987) 

Halligan et al. (1994) 

Hendrickson and Martinelli (1987), Christian and 
Hachey (1995) 

Thomas et al. (1992), Sanders and Thomas (1993), Thomas 
and Sakarcan (1994) 

Neural Networks Moselhi et al. (1991) 

Regression analysis has been the common tool used in construction productivity studies, but in 

recent years neural networks have been a successful alternative to regression analysis for problems 

similar to construction labor productivity modeling. However the potential capabilities of neural 

networks for construction labor productivity modeling have not been examined. The focus of this 
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Study was to develop a methodology for modeling construction labor productivity of different tasks 

with multiple factors. Use of neural networks was explored as a part of the overall modeling 

methodology. The methodology was used to develop multivariate productivity models for concrete 

pouring, formwork, concrete finishing, and granular fill. Results of the models were compared with 

the results of the models developed by other present construction labor productivity modeling 

methodologies. 

1.2 Construction Labor Productivity Definitions 

In the construction industry the meaning of the term productivity varies with its application to 

different areas. The term productivity usually refers to the output produced per unit input. The 

overall measure of the productivity can be defined by the total factor productivity (TFP). TFP is 

used by the several government agencies including the Department of Commerce, and is defined by: 

Total Output 
TFP = 

Labor + Material + Equipment + Energy + Capital 

TFP is an economic model, in which inputs and outputs are measured in terms of dollars. TFP is not 

very useful for contractors, as it can be highly inaccurate if applied to a specific project because of 

difficulties in predicting the various inputs. At the project site contractors are usually interested in 

labor productivity (Thomas et.al. 1990). There is no standard definition of labor productivity, 

it can be defined in one of the following ways (Thomas and Mathews 1985): 

Labor Productivity = 
Labor Cost (1.2) 
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or; 

Labor Productivity = 
Output 

Woric Hour (1.3) 

Other terms such as efficiency may be used synomously with the term productivity. Equation 1.3 is 

usually referred, to as, the production rate. Sometimes inverse of equation 1.3 is used by the 

contractors: 

The outputs in equations 1.2, 1.3 and 1.4 are usually measured in appropriate units for various kinds 

of product outputs for the tasks. Typical units are square feet, cubic yards, and tons. 

In this study, equation 1.3 was used to calculate productivity because: (1) The equation fits into 

classical definition of productivity where productivity is the ratio of output of a production process to 

the corresponding input (Martin 1991; Skills 1992) and, (2) a higher productivity value defined by 

the equation indicates a higher output/input ratio. 

1.3 Adjustment Factors 

Several attempts have been made to determine effects of various factors on construction labor 

productivity. The early studies (Dalliva 1954; Neil 1982; Neil and Knack 1984) recommended use 

of adjustment factors to quantify the effects of these factors. Adjustment factors are generally values 

between zero and one, representing the effects of factors at various levels. The effect of a factor is 

reflected by multiplying the average productivity rate with the adjustment factor of the 

corresponding factor level. 

Dalliva (1954) recommended adjustment factors for eight different groups including; general 

economy, amount of work, labor, supervision, job conditions, weather, equipment, and delay. The 

adjustment factors were given in terms of ranges for each of the three (low, average, high) factor 

Labor Productivity = 
Work Hour 

Output (1.4) 
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levels. For example, Dalliva suggested that for a high amount of precipitation, average productivity 

should be multiplied by a factor between 0.25 and 0.55. However, Dalliva neither defined a 

quantified range for the high amount of precipitation, nor suggested a quantified procedure to select 

the adjustment factor between 0.25 and 0.55. 

Neil (1982), and Neil and Knack (1984) proposed adjustment factors for seventeen factors. These 

adjustment factors were also given in terms of ranges. Vepi' little is known about how these 

adjustment factors were determined. 

A set of adjustment factors commonly accepted by the construction industry does not exist. 

Adjustment factors recommended by different sources or experts may be different for the same 

factor levels. Adjustment factors method also does not define a quantified methodology for 

productivity prediction. Although this method has several limitations, several contractors use a 

similar approach for productivity prediction because of it's simplicity (Sonmez 1992). The 

estimators quite often predict labor productivity by adjusting the average productivity for project 

conditions on the basis of their experience and judgment. 

1.4 Work Sampling 

Work sampling is a technique that measures the percent of time craftsmen spend in various 

categories of tasks, such as direct work, transporting materials, or waiting (Thomas .1991). Research 

in this area has been ongoing since the early 1980's. Thomas, Guevara, and Gustenhoven (1984) 

compiled data from construction of a nuclear power plant. The study focused on a ten worker 

pipefitter crew working in the containment building during a ten week period. The ratio of earned to 

actual workhours was used as the measure of the labor productivity. The data indicated a strong 

correlation between productivity and direct work. The conclusion was that work sampling can be 

used as an accurate estimator of construction productivity, provided that the direct work is narrowly 

defined. 
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In another work sampling study, Liou and Borcherding (1986) collected 45 data points from 

eleven nuclear power projects, and four fossil fuel power projects. The ratio of workhours to units 

completed was used as the measure of the productivity. Liou and Borcherding concluded that work 

sampling data had a significant relationship with the productivity. Thomas (1991) focused on the 

main assumption of tlie work sampling productivity models. The main assumption of the work 

sampling models was that the percent of direct work was related to labor productivity. The database 

of the study was obtained from seven sources including Thomas, Guevara, and Gustenhoven (1984), 

and Liou and Borcherding (1986). The database consisted of 288 data points compiled from 48 

projects. Regression models of labor productivity where direct work was used as the independent 

variable were developed. The models had a very low coefficient of determination, indicating an 

insignificant relation between direct work and productivity. Thomas suggested that work sampling 

studies show how busy the crafits are, and cannot be used to predict labor productivity. Thomas 

(1990) also argued that the early studies by Thomas, Guevara, and Gustenhoven (1984), and Liou 

and Borcherding (1986) had overstated the productivity prediction capabilities of the work sampling 

models. 

1.5 Weather Models 

Several studies have been carried out to model the effects of weather on construction labor 

productivity. One of the early studies was performed by Clapp (1966). Clapp studied five housing 

projects in the United Kingdom and classified manhour losses due to weather into five categories: 

(1) Bad weather time in which the craftsman can not work but is paid; (2) reduced productivity in 

which less output is obtained with the same labor input; (3) rework because of damage or low quality 

workmanship resulting from frost, ice, wind or rain; (4) high absenteeism; (5) reduced working 

schedule. Clapp reported that considerable manhours were lost in all categories except for the 

second one. 
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The National Electrical Contractors Association (NECA) conducted a controlled experiment to 

quantify the effects of humidity and temperature on labor productivity ("The Effect" 1974). It was 

concluded that productivity varies as a function of temperature and humidity; however, the study had 

several limitations. The crew of the experiment consisted of only two electricians, and the task was 

limited to installation of electrical boxes and duplex outlets. Furthermore, there was only a single 

observation for each of the temperature and humidity levels because the study time was limited to six 

days. Finally factors other than temperature and humidity were not considered in the study although 

they might have significantly influenced the observations. Thomas and Yiakoumis (1987) argued 

that improved productivity resulting from familiarization with highly repetitious work could have 

affected the results for the NECA study. Plots of productivity versus temperature for different 

humidity levels were presented as the findings of the NECA study. Models explaining productivity 

variations due to temperature and humidity were not presented. 

Grimm and Wagner (1974) studied mason productivity over a period of nine months during the 

construction of 283 test walls under regulated conditions. The Grimm and Wagner study did not 

include factors other than temperature and humidity like the NECA study. It was argued by Thomas 

and Yiakoumis (1987) that the exclusion of the repetition effect in the Grimm and Wagner study may 

have led to an overstatement of productivity losses due to weather. Work by Grimm and Wagner 

included contour plots of productivity versus temperature and humidity for the data but did not 

include productivity models. 

Koehn and Brown (1985) developed two regression models to quantify productivity variations 

due to temperature and humidity. The data used to develop the models were obtained from a number 

of sources including NECA, and the Grimm-Wagner studies. The data collection methods of the five 

sources used in the study were not same; furthermore, some of the resources included very limited 

information about the way in which productivity was measured. The data set of the study included 

productivity data of seven different tasks or crafts. These were grouped as manual excavation, 
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erection, masonry, electrical, carpentry, laborer, and equipment excavation. All of the data from 

different tasks were combined to develop the models; however, terms presenting variations due to 

different tasks were not included in the models. The same limitation was also present in the model 

developed by Thomas and Yiakoumis (1987). This model was based on the data compiled from 

three building projects. The data included performance ratios (actual/expected productivity) of steel, 

masonry, and formwork tasks. Temperature and humidity were used as the independent variables to 

explain variations in the performance ratios. The effect of repetition was considered during 

calculations of the performance factors. 

The data of the NECA and Grimm-Wagner studies, and the predictions of Koehn-Brown and 

Thomas-Yiakouimis models were plotted through Figures 1.2 to 1.5. In all of the plots at low 

temperature levels, productivity increases as the temperature increases, and at high temperature 

levels, productivity decreases as the temperature increases. But there are a lot of differences among 

the relative humidity effects of the four studies. The NECA plot indicates that increase in humidity 

rates decrease productivity' only at high temperature rates, though the Grimm-Wagner plot suggests 

that productivity declines when relative humidity deviates from 60 % at all temperature levels. The 

Koehn-Brown model however, indicates that productivity does not improve when relative humidity 

increases from 35% to 60 %, unlike the Grimm-Wagner study. The model suggests that high 

humidit>' rates at low temperature levels result in a decreased productivity. The Thomas and 

Yiakoumis model, on the other hand, suggests a unique relation between temperature and relative 

humidity. The plot of the model indicates a very significant effect of relative humidity beyond 80 %. 

This effect results in a zero productivity beyond 85 % at all temperature levels. 
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1.6 Repetition Studies 

It is expected that productivity will improve with continuous repetition of a task as the crew 

becomes more familiar and skilled with the task. Repetition may also lead to improved equipment, 

crew, and material management, and development of more efficient techniques. The effect of 

repetition on construction labor productivity was modeled in several studies. These models are 

usually referred as learning curves. 

Learning curves for construction tasks were developed in an early United Nations study 

("Effects" 1965). In this study a number of reports from various European Countries were reviewed. 

The learning curve models developed by the Norwegian Building Research Institute and data of 44 

residential building activities were also included in the findings of the study. The data reported in 

the United Nations study along with, data of a building project (Ward and Thomas 1984) and a 

bridge project (McClure et al. 1980a, 1980b) were used by Thomas, Mathews and Ward (1986) to 

compare different learning curve alternatives for construction tasks. Thomas, Mathews and Ward 

used cumulative average productivity, instead of unit productivity used by the Norwegian Building 

Research Institute. 

The use of cumulative average productivity for the installation time indicated a relation between 

the installation time and the cumulative precast concrete plank number for the building project, 

although no relation was identified by Thomas, Mathews, and Ward from the initial plot of unit 

installation time versus cumulative plank number. Thomas, Mathews, and Ward concluded that the 

use of cumulative average productivity instead of unit productivity was superior for learning curve 

modeling. Their conclusions were based on the coefficient of determination values calculated for the 

two learning models. The author of this study, however, believes that the use of cumulative average 

productivity may lead to an overstatement of the effect of repetition on productivity. This 

overstatement is mainly due to the very few observations at the initial stages. As in the building 

project presented, most of the installation times were between one and five minutes at the initial 
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stage. But there were two observations at the seventeen minute range. These two observations 

caused a dramatic increase in the cumulative average productivity value at the initial stage, until their 

effect in the cumulative productivity value were balanced by enough observations. The decrease in 

the cumulative productivity curve given in Figure 1.6 is mainly because of this balancing. If the 

installation time decreased with repetition this would have been also observed in the plot of unit 

installation time versus cumulative plank number. 

Productivity improvements due to repetition was observed at the Baker Ridge Highway 

Tunnel (Oglesby et al. 1989). A plot of number of shifts required to excavate each drift versus its 

drift number is given in Figure 1.7. Each tunnel drift was 1330 feet long. The progress was not 

always smooth because of the effects of factors other than repetition. 

1.7 Scheduled Overtime Studies 

Scheduled overtime is another factor that is believed to cause variations in labor productivity. 

Overtime was reported to have significant influence on labor productivity by Proctor & Gamble 

during their Green Bay operation ("Scheduled" 1980). Figures 1.8 and 1.9 illustrate the reported 

effect. The productivity observations were the average of the productivity rates for a week and the 

initial week of the project was taken as a baseline. 

The Construction Industry Institute (CII) sponsored a three-year study of overtime in 1984 ("The 

Effects" 1988) which included data of seven projects. The overtime influences on productivity were 

not consistent. This study concluded that overtime does not necessarily cause a decrease in the 

productivity. In another CII overtime study data of electrical and mechanical crews from four 

projects were compiled (Thomas and Raynar 1994). Only three crews in the study worked an 

overtime schedule for at least four weeks or more. Tliere was also inconsistency in the overtime 

schedule. For example, a crew may have worked five days in one week, six days the next week, and 

then return back to a five day work schedule. The plots of average productivity values of the crews 
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for each week of overtime are given in Figures 1.8 and 1.9. The initial week (week 0) was taken as 

the baseline so the productivity values could be compared with the values of the Proctor & Gamble 

study. The productivity value for week seven of 1994 CII study was obtained from a single crew 

observation, whereas productivity values for the first four weeks were obtained from averages of at 

least four crew observations (Figure 1.8). In the findings of the 1994 CII study Thomas and Raynar 

concluded that the average loss due to productivity was within the range of 15 %. However, they 

also mentioned that the productivity losses due to overtime were not automatic but could range from 

0 % to approximately 25 % for crews (projects) where there were no factors influencing 

productivity. 

The methods used in the mentioned overtime studies were limited to plots of data and calculation 

of means. Statistical methods such as regression or variance analysis were not used; therefore, the 

statistical significance of the difference between regular time productivity versus overtime 

productivity for the studies was not available. 

1.8 Expectancy Theory Model 

A variety of motivational models were studied to understand construction motivation. The first 

motivational model validated for construction activities was the expectancy theory model (Maloney 

andMcFillen 1985). 

Expectancy theory explains variations in the performance by the effort that a worker is willing to 

exert on a task. Effort is related to the incentives and can be increased or decreased by job 

conditions, management actions, and rewards. Expectancy theory suggests that if the worker has 

adequate knowledge and skills, proper direction is given by the management, and constraints are 

removed, then the performance will be high. Although expectancy theory was initially developed as 

a theory of individual performance, it can also be applied at the crew level. 
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The expectancy theory model was validated by Maloney and McFillen (1985) through a survey. 

The survey included 703 responses from unionized construction workers of different crafts. The 

Maloney and McFillen model was not validated through direct productivity measurement, but only 

self-reported measures of productivity were collected. Therefore the model is not adequate to 

quantify the effects of factors or to predict productivity (as defined by equation 1.3). 

1.9 Action Response Model 

The action response model graphically depicts how a variety of factors may interact to cause a 

loss of productivity (Halligan et al. 1994). The action response model has six components; initiating 

events, management-level constraints, crew-level constraints, contractor's management actions, 

consequences of management actions, and crew responses (Figure 1.10). Initiating events, which 

include owner actions, force majeure and third party actions, environmental conditions, and 

contractor's initial actions may ultimately lead to reduced productivity. Owner actions and force 

majeure/third party actions may result in delays, disruptions, changes, or acceleration to the project. 

The contractor is usually made aware of these results through a directive or a change order. 

Difficult working conditions, unavailability of resources, and unsuitable work force are typically 

caused either by the contractor's actions or by environmental conditions. The contractor may not 

become aware of these crew-level constraints unless labor productivity is measured. A variety of 

management actions can be taken to eliminate loss of productivity. However a choice of an 

inappropriate action may add additional constraints to the project. 

Depending on the specifics of the job and contractor's management actions a variety of 

consequences are possible (Figure 1.10). These consequences may result in difficult working 

conditions, unavailability of resources, or unsuitable work force; each influence crew responses and 

may cause loss of productivity. 
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Initiating Events 

Contractor's Initial Actions 

improper planning, 
management, or training; 
improper response to other 
events; improper 
coordination;etc. 

Monitor Productivity 

Management-Level 
Constraints 

delays 
distruptions 
changes acceleration 

Crew-Level Constraints 

dif]1cult working conditions 
resources unavailable 
unsuitable workforce 

Contractor's Management 
Actions 

add/change resources 
change schedule 
modifiy work method 
modify sequence 
no action 

Crew Responses 

fatigue 
low motivation 
slowed pace of work 
absenteeism 
worker turnover 
idle time 
poor quality work 

increased workload 
crowding of workers 
stacking of trades 
dilution of supervision 
out-of-sequence work 
rework 

Consequences of 
Management Actions 

Note: Arrows indicate "may lead to" relationship 

Owner Actions 

design changes, 
slow response to: 
request for information, 
change order requests 

Force Majeure/Third 
Party Actions 

floods, sU'lkes 
change in regulatory 
requirements, etc. 

Environmental 
Conditions 

temperature, humidity, 
precipitation, etc. 

Figure 1.10 Action Response Model 
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The action response model was not validated by any technique; only case studies for the model were 

given. The model cannot be used to quantify the effects of the productivity factors or to predict 

productivity; however, it may be used to determine cause and effect relations in loss of productivity 

to go along with more rigorous statistical analysis in the future. 

1.10 Expert Systems 

The use of expert systems for construction productivity modeling was explored by two studies. 

The first expert system of construction labor productivity, called "MASON", was developed by 

Hendrickson, Martinelli, and Rehak (1987); and the second expert system was developed by 

Christian and Hachey (1995). MASON was used for activity duration and productivity prediction for 

masonry construction. The reasoning used by MASON was developed through interviews with a 

professional mason and a supporting labor. Size, type and location of the job, temperature, 

precipitation level, size of crew, type of labor, and material being used were the factors that were 

included in MASON to modify productivity. MASON was not validated by any technique such as 

cross validation or closeness of fit comparison with the factor model. MASON was limited to 

knowledge of a professional mason and a supporting laborer. Multiple experts were not consulted to 

reach a consistent model of labor productivity for masonry construction. 

A more recent expert system was developed by Christian and Hachey (1995) to predict 

production rates for concrete placement. Three sources were used to determine the expert rules. 

These sources were heuristic knowledge, published knowledge, and field knowledge. Field 

knowledge consisted of observations obtained from eleven projects by video recording and 

stopwatch studies. The total observation time at each site varied between 68 and 263 minutes. The 

work sampling variation technique was used to analyze variations in the productivity data. The 

conclusion was that waiting time delay was a very significant cause for reduced productivity. 



www.manaraa.com

20 

The expert system developed by Christian and Hachey had several limitations. First of all, the 

data sources used to develop the expert system had significant variations and inconsistencies. Very 

little is known about how these variations and inconsistencies were analyzed to determine the expert 

rules. Second, the work sampling technique was used to analyze the field productivity data. The 

limitations of work sampling for productivity modeling was discussed in Section 1.4. Third, the 

field data was very limited; the longest total observation period for a project was 263 minutes, 

whereas the shortest was 68 minutes. The total observation periods were very short to get a good 

sample that includes possible variations in productivity due to different factors. Finally, this expert 

system was not validated by any technique. 

The rules of the two expert systems discussed consisted of adjustment factors for different factor 

levels. In MASON, the knowledge of a mason and a laborer was used to determine these adjustment 

factors, whereas, in the second expert system three different sources were used. Once these 

adjustment factors are determined, productivity prediction can also be done manually by multiplying 

normal productivity with the adjustment factors for the given factor levels, as discussed in 

Section 1.3. 

Construction productivity modeling requires quantification of previous experiences. This 

quantification can be done by mapping nonlinear, noisy, productivity data. However expert systems 

lack the ability of mapping noisy data and generalizing solutions (Wassermann 1989; Zahedi 1991) . 

1.11 Factor Model 

The factor model is a multivariate regression approach for modeling of construction labor 

productivit>'. Quantification of effects of the factors involves the statistical analysis of labor 

productivity. Data ft-om thirteen projects were compiled by Sanders and Thomas (1993) to study 

factors affecting masonry productivity. However, all of the data compiled were not used to develop 

the model. The database including 465 samples were divided into two parts: Non disrupted or 
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normal working days and, disrupted or abnormal working days. Abnormal conditions were usually 

results of disruptions such as congestion, lack of materials, and bad weather. Only normal working 

days consisting of 286 samples were used to develop the factor model. The following model was 

suggested: 

PDP = a + P| + P2 + P3+CO + 0 + ^|C + A-jC^ + XjC^ (1.4) 

where PDP is the predicted daily productivity; a is a constant term representing standard conditions; 

Pi is the work type coefficient; P2 is the physical element coefficient; P3 is the design detail 

coefficient; co is the construction method coefficient; 0 is the weather zone coefficient; Xj, ^3 

are the corresponding coefficients for crew size terms; and c is the crew size. 

The factor model given explained 41 % of the total variability of the non disrupted productivity 

data. Plots of factor model for temperature, humidity and crew size factors are given in Figures 1.11 

and 1.12. To obtain Figure 1.11 temperature and humidity levels were varied, while rest of the 

factors were kept constant at their standard condition levels. The standard condition levels were 

defined by Sanders, and Thomas (1993). Figure 1.12 was obtained in a similar way, but this time 

crew size level was varied while the rest of the factors were kept constant at their standard condition 

levels. 

The factor model suggests that productivity declines as temperature increases. This contradicts 

all of the previously discussed weather models (Section 1.5) where productivity improves as the 

temperature increases at low temperature levels. The contradiction may be because of the removal 

of the disrupted working days due to abnormal weather conditions. It is possible that these data 

points included low productivity values due to cold weather disruptions. 

The factor model is limited to binary relations, except for the crew size factor. The model was 

compared with percent complete method for closeness of fit, however, the model has not 

been validated by a technique such as cross validation; therefore the predictive accuracy of the model 

is questionable. 
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1.12 Neural Networks 

Neural network models are algorithms for cognitive tasks, such as learning and optimization, that 

are based on concepts derived from the research into the nature of the brain (Muller and Reinhardt, 

1990). Neural networks have the capability of learning from a number of input patterns 

(representing different problem encounters) and their associated output patterns (representing the 

conclusions and decisions). During the process called training, the network generalizes the 

knowledge, and becomes capable of providing solutions to the new problems even if only incomplete 

or noisy data are available. Once a network is trained using an adequately representative training set, 

it can be used to classify or to predict the output of the modeled system for a given input pattern. 

One of the attractive properties of such networks is their capacity for tolerating moderate amounts of 

noise, and variations in the input. 

Neural networks provide a variety of powerful tools for optimization, function approximation, 

pattern classification, and modeling. Neural network models have been developed and used as an 

alternative to regression analysis since the back propagation algorithm was proposed. Table 1.2 

includes some of the studies in which both neural networks and regression analysis were used to 

model a specific problem. Different comparison methods were used in the studies. In studies 1,3,5 

and 6 only closeness of fit (See Section 2.6) was used to compare neural networks with the 

regression models. However a good closeness fit for a neural network model does not necessarily 

guarantee a good prediction performance, therefore generalization (prediction) performance of these 

neural networks is not known. 

The regression model for concrete strength prediction (Williams et.al. 1992) was slightly better 

than the neural network model. In another study by the same author, it was concluded that neural 

networks cannot accurately predict the variations of construction cost indexes because the regression 

model was more accurate than the presented neural network model (Williams 1994). However the 

study had two main limitations. In the regression model only, one variable was used, but in neural 
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network nine variables were used to predict the variations of the construction cost index. Data 

identification was not conducted to determine which one of these nine variables had a significance 

influence on the construction cost index variations. It is quite possible that some of the nine 

variables used in the neural network model did not have a significant effect on the cost index, which 

may have resulted in overtraining. The second limitation of the study was twenty hidden units used 

Table 1.2 Neural Network Models Compared with Regression Models 

No Application Comparison Method Source 

1 Stock Market Closeness of Fit Kimotoetal. (1990) 

2 Electrical Load Prediction Performance Srinivasan et al (1991) 

3 Industrial Production Closeness of Fit Niu et al. (1991) 

4 Concrete Strength Prediction Performance Williams etal. (1992) 

5 Pump Cost Closeness of Fit McKim(1993) 

6 Bankruptcy Closeness of Fit Fletcher and Goss 
(1993) 

7 Stock Ranking Closeness of Fit & Prediction 
Performance 

Refenes et al. (1994) 

8 River Flow Closeness of Fit & Prediction 
Performance 

Karunanithi et al. (1994) 

9 Cost Index Prediction Performance Williams (1994) 

10 Soil Correlations Closeness of Fit & Prediction 
Performance 

Goh(1995) 
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in the neural network model with only 215 training samples. Use of twenty hidden units, with nine 

input, and two output units requires estimation of 242 model parameters. 215 training samples may 

not be sufficient to estimate 242 mode! parameters. The two limitations; use of insignificant input 

variables and use of too many hidden units with few training facts, might have caused poor 

predictive accuracy for the neural network model. 

In the studies 2,7, and 8 neural network models (Table 1.2) were reported to be inore accurate 

than the regression models. The neural network models were compared with the traditional 

regression models that have been commonly used for the problems 2 and 8, but little is known about 

the class of the regression model used in study 7, in which the neural network model was reported to 

be much better than the regression model for both closeness of fit, and prediction performance. 

In a recent study, Goh (1995) demonstrated the potential of neural networks to capture nonlinear 

interaction between various soil variables. Goh compared the neural networks with the previously 

used regression models, and concluded that neural network models were able to produce reasonably 

accurate predictions. 

Neural networks with their modeling capabilities appear to be a powerful tool for construction 

labor productivity modeling, as was originally pointed out by Moselhi, Hegazy, and Fazio (1991) in 

an article about possible neural network applications in construction engineering and management. 

Since then, however, no studies have been published about use of neural networks for construction 

labor productivity modeling. 

1.13 Construction Labor Productivity Modeling with Neural Networks and Regression 

Analysis 

Model fitting for construction labor productivity data requires quantification of the effects of 

factors on labor productivity and quantification of the interactions among the factors. This task of 



www.manaraa.com

26 

identifying a mapping function from the independent variables to the dependent variables is 

analogous to that performed by some of the neural network models such as backpropagation. In 

statistics, regression analysis is the most common method to explore this relationship. The 

advantage of regression models lies in their generally, more parsimonious use of free parameters 

than the neural networks. Regression models require the user to decide a-priori on the class of 

relationships (linear, quadratic etc.) to be used in modeling. In the common use of neural network 

models, on the other hand, apart from the choice of a neural network architecture (which constrains 

the class of the models or the functions that can be learned), the user need not exert much effort to 

decide about the class of relationships, and can let the training algorithm do the work. However, it 

must be pointed out that many of the neural network approaches to model fitting are closely related 

to their statistical counterparts. A pragmatic approach, therefore, is to use a mix of tools and 

techniques drawn from both neural networks and statistical approaches for complex real world 

applications such as construction productivity' modeling. This was the focus of this study. 



www.manaraa.com

27 

CHAPTER 2. CONSTRUCTION LABOR PRODUCTIVirY MODELING WITH 
REGRESSION ANALYSIS AND NEURAL NETWORKS 

2.1 Research Objective 

The main goal of this study was to develop a methodology for modeling construction labor 

productivity of different tasks, to improve the present factor modeling methodology in terms of 

closeness of fit and prediction performance. 

2.2 Description of the Data 

The data of this study were compiled from eight projects of a building contractor, during 1992-

1994 time frame. The projects were all located in Iowa and had a range between one to sixty three 

million dollars. Five projects were located in Des Moines, one in Ankeny, one in Newton, and one 

in Johnson. The data was compiled from the main frame database of the contractor and then 

transferred to a comma delimited ASCI file format. The database of the contractor did not directly 

include productivity data; however, labor, quantity and equipment data were kept in three separate 

databases for other purposes. The labor database (Table 2.1) included data of total weekly regular 

and overtime workhours that each employee spent on a particular task. Employee data was recorded 

daily, but cumulative weekly data for a task was put in to the labor database. The craft of the 

workers were also included in the labor database. 

The second database; the quantity database included data of actual quantities completed for 

various tasks (Table 2.2). The quantity database was updated weekly, at the same day, when the 

labor database was updated. The task numbers of the quantity database were identical to the tasks 

numbers for the labor database. 

The third database; the equipment database had data of equipment for all the projects in progress. 

The data on the concrete pump was obtained from the equipment database. 
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Table 2.1. Structure of the Labor Database of the Contractor 

Employee Craft Project No Task No Task Type of Week Total 
Description Wokhours Ending Hours 

Employee-1 Laborer 1 033110 Place Column Regular 930421 9 
Concrete 

Employee-2 Laborer 1 033110 Place Column Regular 930421 7 
Concrete 

Employee-3 Laborer 1 033110 Place Column Regular 930421 6.5 
Concrete 

Employee-4 Carpenter 1 033110 Place Column Regular 930421 1 
Concrete 

Table 2.2. Structure of the Quantity Database of the Contractor 

Project No Week Ending Task No Task Description Quantity 

930421 033110 Place Column Concrete 32 

930428 033110 Place Column Concrete 16 

930505 033110 Place Column Concrete 19 

930512 033110 Place Column Concrete 13 

930519 033110 Place Column Concrete 16 

930609 033110 Place Column Concrete 3.5 
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Data of the independent variable (Production Rate) and dependent variables excluding weather 

variables were compiled from the labor, quantity and equipment databases. Cumulative regular and 

overtime workhours, total number of workers, total number of laborer of each task were calculated 

for every week of a project, if there was a task in progress (Table 2.3). Production Rate (PR) was 

calculated by dividing total quantities completed by the total workhours spent for a task. Percentage 

overtime was obtained by dividing the total overtime hours by the total workhours. Percentage 

laborer was calculated in a similar way by dividing the total hours spent by the laborer craft only to 

the total work hours. Cumulative quantities were calculated by summing the quantities from the first 

week of construction until the week of interest. 

The database of the contractor included several tasks, but only for a limited number of tasks the 

quantities were updated weekly. For some of the tasks that had weekly quantity updates the total 

number of data points obtained from eight projects were very few. There were four tasks which had 

weekly data and had sufficient amount of data points. These tasks were concrete pouring (P), 

formwork (F), concrete finishing (T), and granular fill (G). The data for the concrete pouring task 

included three job types; column (C), slab on grade (S), and walls over eight feet (W). The data for 

Table 2.3. Combined Workhour, Quantity, and Equipment Data 

Week Ending 930421 930428 930505 930512 

Quantity(Cy) 32 16 19 13 
Manhours(Hr) 23.5 14 15 12 
Production Rate(Cy/Hr) 1.36 1.14 1.27 1.08 
Number of Worker 4 4 4 4 
Number of Laborer 3 3 4 4 
Overtime Hours 0 0 0 0 
Concrete Pump 0 0 0 0 
Job Type C C c c 
Project 1 1 1 1 
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the formwork task also included three job types; column, grade beam (B), and walls over eight feet. 

Data for concrete finishing and granular fill tasks included only one job type. The only job type for 

concrete finishing was trowel finish slab, and for granular fill it was fine granular fill. 

Temperature, percent relative humidity, and precipitation data for Des Moines were obtained 

from the local climatological publications of the national climatic data center (Table 2.4). The data 

consisted of observations of temperature in degrees Fahrenheit (F), and percentage relative humidity 

for three hour intervals, and cumulative amounts of precipitation in inches for one hour intervals. 

Table 2.4. Calculation of Weekly Average Temperature and Precipitation Values 

Day 6:01-9:00am 9:01-12;00am 12:01-3:00pm 3:01-6;00pm 

930415 Temperature(F) 35 37 36 35 
Relative 92 89 93 92 
Humidity(%) 

930416 Temperature(F) 41 50 55 55 
Relative 68 46 30 30 
Humidity(%) 

930419 Temperature(F) 53 58 64 59 
Relative 96 97 58 65 
Humidity(%) 

930420 Temperature(F) 40 48 51 48 
Relative 65 48 41 42 
Humidity(%) 

930421 Temperature(F) 46 56 57 55 
Relative 52 25 26 29 
Humidity(%) 

Week Ending Temperature(F) Average 48.95 
930421 Relative Average 59.2 

liuiTliuit^V/O/ 
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The observations were recorded at the end of the time intervals. Weekly average temperature and 

humidity values were obtained by calculating the averages of the temperature and humidity 

observations between 6:01 am to 6:00 pm, monday through friday. Weekly cumulative precipitation 

values were calculated by adding the precipitation observations between 6:01 am to 6:00 pm, 

monday through friday (Table 2.5). 

The weekly weather data compiled for 1992-1994 time interval were combined with the 

productivity data that was obtained from the three databases of the contractor. The total number of 

factors included for a task varied between eight and ten, after weather data were included. A 

summary of factors included for each of the tasks are given in Table 2.6. Some of the factors may be 

represented in more than one group. For example quantities completed for each week may be 

represented in job complexity, as well as in repetition. 

Table 2.5. Calculation of Weekly Cumulative Precipitation Values 
Hourly Precipitation in inches (am) Hourly Precipitation in inches (pm) 

Day 6:01- 7:01- 8:01- 9.00- 10:01-11:01-12:01-1:01- 2:01- 3:01- 4:01- 5:01-
7:00 8:00 9:00 10:00 11:00 12:00 1:00 2:00 3:00 4:00 5:00 6:00 

930415 0.01 0.01 0.03 0.02 0.03 0.02 
930416 
930419 
930420 
930421 
Week Total 
930421 0.12 
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Table 2.6. Labor Productivity Factors 
Group Factors Concrete 

Pouring 
Formwork Concrete 

Finishing 
Granular 

Fill 

A. Job 1. Quantities completed (q) X X X X 
Complexity 2. Job type X X 

B. Crew Size 3. Number of workers (n) X X X X 
& Composition 4. % Laborer (1) X X X X 

C. Repetition 5. Cumulative quantities (cq) X X X X 

D. Weather 6. Temperature (t) X X X X 
7. Humidity (h) X X X X 
8. Precipitation (p) X X X X 

E. Equipment 9. Concrete pump (u) X 

F. Motivation 10. % Overtime (o) X X X X 
& Fatigue 

2.3 Limitations of the Data 

The data of this study, that were compiled from eight projects covering a two-year time frame 

included four tasks and ten productivity factors. However the data had limitations. The data were 

compiled weekly, daily variations in the production rate and factors were not included. The number 

of workers factor was the total number of workers participated in a task during a week. The number 

of workers was related to crew size, but it might not be actually equal to the daily crew size. 

The weather data was limited to the weekly data for Des Moines, although three projects were 

not located at Des Moines. However, the locations of these three projects were all in Iowa, usually 

with similar weather conditions. The factors included in this study were limited to the ones given in 

Table 2.6. 
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2.4 Modeling Methodology 

The modeling methodology for this study consisted of four stages: Data identification, regression 

analysis, neural network modeling, and model comparison (Figure 2.1). In the data identification 

stage average production rates for different job types were calculated. Plots of factors versus 

production rate for each job types of tasks were also included in the data identification stage. The 

purpose of the data identification was to identify the factors that might have an effect on production 

rate. Results of previous construction labor productivity studies were also used in combination with 

the data identification stage to define the initial regression model that has all the factors (of Table 

2.6) that might have a significant effect on the production rate for a task. Next, the factors that did 

not significantly improve the regression model were dropped from the model at the regression 

analysis stage. The factors that were used in the final regression model were used to develop the 

neural network models. Several neural network models that have different characteristics were 

developed to improve prediction performance of the neural networks, at the neural network modeling 

stage. Parsimonious models were considered for the regression, and neural network models. A 

parsimonious model fits the data adequately, without using any unnecessaiy parameters. The 

principle of parsimony is important because in practice parsimonious models generally produce 

better forecasts (Pankartz 1983). Finally, at the model comparison stage, the results of regression 

and neural networks were compared with the results of the productivity models available in 

literature. Data identification, regression analysis, neural network modeling, and model comparison 

stages were discussed in detail in sections 2.5 to 3.1. 

2.5 Data Identification 

The first part of the data identification consisted of determination of minimum, maximum, 

average, and standard deviation values of production rate for different job types of the tasks (Table 

2.7). The minimum, maximum, and standard deviation values indicated that there was a high 
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Figure 2.1. Flow Chart of Modeling Methodology 
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Table 2.7 Production Rate Statistics for Different Job Types 

Task Job Type Min. Max. Mean Std.' Ndp" Unit 
PR 

Concrete Column(C) 0.42 3.50 1.28 0.65 21 cy/hr 
Pouring(P) Slab(S) 0.22 11.41 2.45 2.83 24 

Slab Pump(SP) 0.67 11.69 3.48 1.90 34 
Wall(W) 0.58 10.38 4.09 2.16 33 

Formwork(F) Column 1.93 15.15 8.70 3.69 21 sf/hr 
Grade Beam(B) 0.86 29.46 12.27 8.74 20 
Wall 1.83 18.83 8.71 3.55 35 

Concrete Trowel Finish 24.38 406.25 197.17 114.20 46 sf/hr 
Finishing(T) 

Granular Fill (G) Fine Granular 13.11 405.40 140.30 94.91 33 sf/hr 

* Standard deviation 
** Number of data points 

amount of variation in the production rate values. The mean and standard deviations of production 

rate for different job types of concrete pouring and formwork indicated that job type may be a factor 

that has an effect on the production rate. 

Data of production rate versus all of the factors were plotted to identify the factors that may 

influence the production rate. Plots of quantity, number of workers, and temperature versus 

production rate for all of the four tasks were made. Plots of these factors were given, as these factors 

were included in the initial regression models of all of the tasks. Plots were made for each job type 

of the concrete pouring and formwork tasks because of two reasons. The first reason was the 

differences in the levels of production rates between the job types. The second reason was the 
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possible differences among the effects of the factors on production rate for different job types. The 

plots were given in Figures 2.2 to 2.13. 

The effects of quantity on production rate for all the four tasks were easily identified from the 

quantity versus production rate plots; production rate increased when the amount of weekly 

quantities increased. Number of workers versus production rate plots indicated a possible decrease 

in the production rate as the number of workers increased, especially when the number of workers 

were more than five. However this relation was not very significant for the formwork task. The 

temperature versus production rate plots indicated an increase in production rate due to an increase in 

temperature for concrete pouring, and concrete finishing tasks. 

2.6 Regression Analysis 

The factors that were identified at the data identification stage were used to develop the initial 

regression models. The initial regression models developed for each of the four tasks were pure 

linear regression models that included all of the factors that might have an effect on the production 

rate. The factors were the independent variables, and production rate was the dependent variable in 

the regression models. Quantity and number of workers were included in all of models as 

independent variables, because possible influences of the two factors were identified for all of the 

tasks from the plots. Temperature was also included as independent variable in the initial regression 

models of the all four tasks, because previous research suggested influence of temperature on labor 

productivity (Section 1.5). However, only for concrete pouring and concrete finishing, influences of 

temperature on production rate were identified at the data identification stage. The factors other than 

quantity, number of workers, and temperature were included in the initial regression models of the 

tasks if the data identification stage suggested possible effects of the factors on production rate. 
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Once the factors that may have possible effects on production rate for each of the tasks were 

identified, initial regression models for the tasks were developed. Next, the factors that did not 

significantly improve the model were dropped from the model. This was decided by dropping one 

factor at a time. P value of the factor in the regression model, comparison of closeness of fit, and 

prediction performance of the models with and without the factor were the criteria used to determine 

the significance of the factor in the model. Two error measures were used to compare closeness of 

fit and prediction performance of the models: Mean squared error (MSE), and mean absolute percent 

error (MAPE). MSE and MAPE were calculated by: 

MSE = Actualj -Predictedi)^ 
n/=i (2.1) 

MAPE- lfH£!ii2L:P££»2Eaxioo 
n /=! Actualj ^2 2) 

where n is the total number of data points for the model. Using MSE and MAPE together gives a 

better picture of closeness of fit and prediction performance because there was a high variation in the 

production rate values. 

A procedure based on the cross validation technique was developed to compare prediction 

performance of the models. The procedure can be summarized in the following steps: (I) A project 

was selected as the test sample and a new data set was formed. The new data set included data of all 

of the remaining projects but not the data of the project that was selected as the test sample. (2) 

Model parameters for the model which is being evaluated for prediction performance were calculated 

with the new data set. (3) The model with the new parameters were used to predict the production 

rate values of the project which was selected as the test sample. Squared error and absolute percent 

error values of the model predictions for test sample were calculated. (4) All of the projects were 

selected as the test sample, one at a time, and steps 1-3 were repeated for each of the test samples. 
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(5) MSE and MAPE values were calculated by averaging the squared error, and absolute percent 

error values of the all test samples to compare prediction performance of the model being evaluated. 

The procedure described to compare prediction performance requires determination of 

parameters for several models. However if only one data set was selected as the test sample, the 

chance of prediction performance of a model being better than prediction performance of another 

model due to randomness would increase, especially with the limited amount of data used in the 

study. 

2.6.1 Regression Models for Concrete Pouring 

Quantity, number of workers, temperature, overtime, and job type were the factors that were 

identified which might have effects on the production rate of concrete pouring. The initial model for 

concrete pouring was in the following form: 

PR (P) = a + P,q + P,n + Pjt + P4O +P5S + PgU + P^w ^2.3) 

where; PR (P) was the predicted production rate for concrete pouring in cy/hours; a was the 

regression constant; Pj to Py were regression coefficients for the factors; q was the weekly 

quantities in cubic yards; n was the number of workers; t was the temperature in Fahrenheit degrees; 

0=1 if there was overtime, o=0 otherwise; s=l if job type was slab without pump, s=0 otherwise; u=l 

if job type was slab, and concrete pump was present, u=0 otherwise; w=l if job type was wall, w=0 if 

job type was column or slab. Regression statistics of mode! RP-1 are given in Table 2.8. 

The overtime(o) term which had a P-value of 0.266 was dropped from the initial model to obtain 

model RP-2 (Table 2.9). The prediction performance of model RP-2 was better than the model RP-I. 

Next the slab (s) term which had P-value of 0.103 in model PR-2 was eliminated from the model RP-

2 to obtain model RP-3. The closeness of fit, and prediction performance of RP-3 was similar to RP-

2. but RP-3 was preferred over RP-2 because it was more parsimoniuos. Elimination of the 
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Table 2.8 Regression Statistics for Model RP-1 

R Square .530 

Observations 112 

ANOVA 
df SS MS F Significance F 

Regression 7 305.86 43.69 16.73 1.26E-14 

Residual 104 271.63 2.61 

Total 111 577.49 

Coefficients Standard t Stat F-value Lower Upper 
Error 95% 95% 

Intercept .508 .600 .847 .3991 -.682 1.698 

q .008 .001 7.583 .0001 .006 .010 

n -.200 .064 -3.125 .0021 -.327 -.073 

t .024 .008 2.897 .0051 .007 .040 

0 -.520 .465 -1.118 .2661 -1.441 .402 

s .851 .494 1.723 .0881 -.129 1.832 

u 2.173 .578 3.762 .0001 1.028 3.319 

w 2.757 .537 5.138 .0001 1.693 3.821 

Table 2.9. Steps through Model RP-1 to Model RP 

Closeness of Fit Prediction Performance 
Step Model R2 MSE MAPE MSE MAPE Operation Term P-value 

i RP-1 .530 2.42 69.7 4.27 83.6 drop 0 .266 
ii RP-2 .524 2.45 68.8 4.03 80.7 drop s .103 
iii RP-3 .512 2.52 66.0 4.13 77.0 drop t .009 
iv RP-4 .479 2.68 65.1 4.19 84.0 add t 
V RP-3 .512 2.52 66.0 4.13 77.0 add q*u 
vi RP .569 2.22 61.3 3.96 71.7 
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temperature term from model RP-3 resulted in a worse prediction performance, and closeness of fit. 

so model RP-3 was preferred over model RP-4. 

The sensitivity analysis of the neural network model for concrete pouring indicated possible 

interaction between quantity and concrete pump (u) terms. The rate of increase in production rate 

due to increase in the level of quantity was observed to be different for concrete pouring with pump 

than the rate of increase for concrete pouring without pump. The q*u interaction term improved both 

the closeness of fit, and prediction performance of the regression model RP-3. The model designated 

RP was selected as the final regression model. 

2.6.2 Regression Models for Formwork 

Quantity, number of workers, temperature, precipitation, and job type were the factors that were 

identified, which might have influenced the production rate of the formwork task. The first 

regression model of formwork (RF-1) was in the following form: 

PR(F)= a + p.q + P^n + Pjt + P^p + Pjb + P^w ^2.5) 

where PR(F) was the predicted production rate for formwork in sf/hours; b=l if job type was grade 

beam, b=0 otherwise; a was the regression constant; q,n,t,p,w were same as the variables defined by 

equation 2.4. The regression statistics of model RF-1 are given in Table 2.10. 

The temperature term which had the highest P-value in model RF-1 was dropped from model RF-

1 to obtain model RF-2 (Table 2.11). Because model RF-2 had better prediction performance than 

model RF-1 with a similar closeness of fit, elimination of terms were continued with wall term. 

Model RF-3 were similar to model RF-2 in terms of prediction performance, and closeness of fit. but 

was preferred because it was more parsimoniuos than model RF-2. Elimination of the precipitation 

term from Model RF-3 improved prediction performance with an insignificant loss of closeness of 

fit. Next the grade beam term was dropped from model RF-4 to obtain model RF-5. Model RF-5 
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Table 2.10. Regression Statistics for Model RF-1 

R Square .514 

Observations 76 

ANOVA 

df 

Regression 6 

Residua! 69 

Total 75 

SS MS 

1203.47 200.58 

1136.80 16.48 

2340.27 

F Significance F 

12.17 2.74E-09 

Coefficients Standard t Stat P-value Lower Upper 
Error 95% 95% 

Intercept 8.600 1.681 5.116 .0000 5.246 11.953 

q .002 .000 7.728 .0000 .002 .003 

n -.333 .130 -2.556 .0128 -.594 -.073 

t .016 .031 .510 .6117 -.046 .077 

P -2.134 1.396 -1.529 .1308 -4.919 .650 

b 1.810 1.301 1.391 .1687 -.786 4.407 

w -2.177 1.507 -1.445 .1529 -5.183 .828 

Table 2.11. Steps through Model RF-1 to Model RF 

Closeness of Fit PredictionPerformance 
Step Model R- MSE MAPE MSE MAPE Operation Term P-value 

i RF-1 .514 14.96 62.7 21.50 81.9 drop t .612 
ii RF-2 .512 15.01 63.0 20.32 79.7 drop w .113 
iii RF-3 .494 15.57 65.5 20.81 77.7 drop P .164 
iv RP-4 .480 16.00 66.5 20.42 78.0 drop b .008 
V RF-5 .427 17.63 61.8 21.04 68.1 drop n .000 
vi RF-6 .266 add n 
vii RF-5(RF) 



www.manaraa.com

50 

was preferred over Model RF-4, because it had a similar prediction performance and closeness of fit 

with fewer parameters. Finally model RF-6 was obtained by dropping the number of workers term 

from model RP-5. Model RP-5 was selected as the final regression model for formwork (RP) 

because, model RF-6 had a poor prediction performance, with a significant loss of closeness of fit 

compared to model RF-5. 

2.6.3 Regression Models for Concrete Finishing 

The initial regression model for concrete finishing (RT-1) included quantity, number of workers, 

temperature and precipitation as the independent variables, and was in the following form: 

PR(T)= a + Piq + P^n + Pjt + P4P (2.5) 

where; PT(T) was the predicted production rate for concrete finishing in sf/hours. The percentage of 

variation explained by the initial regression model (R^) for concrete finishing (Table 2.12) was less 

Table 2.12. Regression Statistics for Model RT-1 

R Square .308 

Observations 46 

ANOVA 

Regression 

Residual 

Total 

df 

4 

41 

45 

SS 

180876 

406011 

586887 

MS 

45218.99 

9902.71 

F 

4.57 

Significance F 

0.003838 

Coefficients Standard t Stat P-value Lower Upper 
Error 95% 95% 

Intercept 224.266 132.734 1.690 .099 -43.797 492.329 

q .004 .002 2.683 .010 .001 .007 

n -10.910 6.147 -1.775 .083 -23.324 1.504 

t 1.507 .841 1.792 .081 -.192 3.206 

P -1.399 1.449 -.965 .340 -4.325 1.528 
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than percentage of variation explained by the initial regression models for concrete pouring, and 

form work. 

Terms that did not improve the initial regression model of concrete finishing task were 

eliminated one at a time (Table 2.13). Elimination of precipitation, and number of workers terms 

improved prediction performance, without reducing closeness of fit significantly (RT-3). However 

elimination of the temperature term resulted in a model that had a poor prediction performance, and a 

poor closeness of fit; therefore, temperature term was kept in the model. Sensitivity analysis of the 

neural network model for concrete finishing and low R^ value of the model suggested that only a 

linear term for temperature may not be sufficient. The polynomial term t^ was added to the model 

RT-3 to obtain next model; RT-4. But model RT-4 predicted negative production rate values at 

certain levels of temperature. The problem was eliminated by dropping the regression constant a 

from model RT-4. The final regression model; model RT had a good prediction performance, and 

closeness of fit compared to other regression models, and was selected as the adequate regression 

model for concrete finishing. 

Table 2.13. Steps through Model RT-1 to Model RT 

Step Model R2 

Closeness of Fit 

MSE MAPE 

Prediction 
Performance 
MSE MAPE Operation Term P-value 

i RT-1 .308 8826 80.9 28350 161.0 drop P .340 
ii RT-2 .292 9026 77.8 23493 135.8 drop n .112 
iii RT-3 .248 9593 72.5 20304 118.6 drop t .019 
iv RP-4 .168 10609 82.6 21391 127.0 add t 
v RF-3 .248 9593 72.5 20304 118.6 add t2 

vi RT-5 .307 drop a .510 
vii RT .301 8920 69.5 18831 107.6 
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2.6.4 Regression Models for Granular Fill 

Quantity, number of workers, temperature and precipitation variables were included in the initial 

regression model for granular fill (RG-1). The model was in the following form: 

PR(G)= a + P,q + P," + + P4P (2.6) 

where; PT(6) was the predicted production rate for granular fill in sf/hours. Regression statistics of 

model 2.6 are given in Table 2.14. The temperature term was the first term dropped from the model. 

Model RG-2. the model without temperature term was similar to model RG-1 in terms of predictive 

performance, and closeness of fit (Table 2.15). RG-2 was preferred over RG-1 because it was more 

parsimonious. Elimination of precipitation term resulted in model RG-3 which had poor prediction 

performance, and closeness of fit compared to model RG-2. Model RG-2 was selected as the final 

regression model for granular fill (RG). 

Table 2.14. Regression Statistics for Model RG-1 

R Square .797 

Observations 33 

ANOVA 

df SS MS F Significance F 

Regression 4 229742 57435.49 27.49 2.45E-09 

Residual 28 58503 2089.38 

Total 32 288245 

Coefficients Standard t Stat P-value Lower Upper 
Error 95% 95% 

Intercept 158.295 33.047 4.790 .000 90.601 225.988 

q .020 .002 9.074 .000 .015 .024 

n -11.901 4.568 -2.605 .015 -21.259 -2.544 

P -.799 .577 -1.384 .177 -1.981 .384 
t -56.171 30.945 -1.815 .080 -119.558 7.217 
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Table 2.15. Steps through Model RG-1 to Model RG 

Closeness of Fit Prediction 
Performance 

Step Model R- MSE MAPE MSE MAPE Operation Term P-value 

RG-1 .797 1773 33.6 2648 51.6 drop t .177 
ii RG-2 .783 1894 33.6 2881 49.6 drop n .024 
iii RG-3 .741 2263 41.1 3692 76.2 add n 
iv RG-2(RG) .783 1894 33.6 2881 49.6 

2.7 Neural Network Modeling 

Neural network models used in this study consisted of backpropagation neural network models 

which have the capability of identifying a mapping function from the independent productivity 

variables (factors) to the dependent variable (production rate), and have been commonly used in the 

applications similar to construction productivity modeling (Sections 1.2 and 1.3). In the neural 

network models developed for the different tasks, only the factors that were determined to influence 

production rate significantly were included as input variables. These factors were defined through 

data identification and regression analysis stages. The architecture, and training algorithms of these 

models are discussed in Sections 2.7.1 to 2.7.5. 

2.7.1 Feedforward Neural Networks and Back Propagation 

Artificial neural networks are typically composed of interconnected units which serve as model 

neurons (Hinton, 1992). A multilayer feedforward neural network consists of a set of units 

(neurons) that are logically arranged into two or more layers (Figure 2.14). There is an input layer 

and an output layer, each containing at least one unit. Between input and output layers there are 
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and an output layer, each containing at least one unit. Between input and output layers there are 

usually one or more "hidden" layers. The term "feedforward" means that information flows in one 

direction only. The inputs to units in each layer come exclusively from the outputs of the units in 

previous layers, and outputs from these neurons pass exclusively to neurons in following layers. 

Each connection between the input layer and a hidden unit has an associated weight Wy. The 

net signal Ij to an individual hidden unit is expressed as the sum of connections between the input 

layer units, and that particular hidden unit plus the connection value Wgj from a bias node. This 

relationship may be expressed as: 

Ij = 2:wij0i + vvgj, 

where Oj is the signal produced by the input unit i. The signal from the hidden layer is processed 
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Figure 2.14 A Feedforward Neural Network Model with One Hidden Layer 
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with an activation function. In Rumelhart, Hinton and Williams (1986) network logistic function 

was used, which processed according to: 

1 +exp( -Ij)  

The net signal to an output unit is the sum of all connections between the hidden layer units 

and the respective output node, expressed as: 

Ik = Z Wjk Oj + Wgk, 

where Wgk represents a single connection weight from a bias unit. The net signal is again processed 

by logistic function to produce the final output value Ok, where: 

Ok = 
1 +exp(-Ifc) 

At the output layer the net signal Ok (estimated dependent variable) is compared to the actual 

value of the dependent variable, Tk, to produce an error signal. Rumelhart et al. (1986) used the 

"delta rule" to minimize the network error, and defined the process of weight adjustment by: 

AWjic(n+1) = riSpkOpj + aAWjk(n), 

where t| is the learning rate, and a is the momentum factor. The learning rate allows control on the 

magnitude of changes in weights. The momentum factor determines the effect of past weight 

changes on the current direction of movement in the weight space, and proportions the amount of the 

last weight change to be added into the new weight change. 

The error signal 5 is back-propagated to the connection weights between the hidden and output 

layers is defined as the difference between the target value Tpk for a particular input pattern p and the 

neural network's feed-forward calculations of the signal from the output layer 0|j as: 

Spk ~ (Tpk - Opk)Opk(1-Opi{) 

Then the connection weights between the input and hidden layers are changed by: 

5pj = Opj{1-Opj) kSSpkWjk 
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The data feed-forward and error back-propagation process (training) is continued until the desired 

accuracy or a certain number of iterations is reached. 

The task in training is to determine a unique set of network weights (W's) that enables the 

network to produce outputs (O's) that match the set of target outputs (Ts), pertaining P training 

examples, when fed only with the respective inputs (X's). When the desired mapping is achieved, 

the network is said to be knowledgeable about all P examples. 

2.7.2 Learning Rate and Momentum Factor 

One of the limitations of the backpropagation algorithm is the training speed. Several techniques 

have been proposed to overcome this. The simplest approach is to use a large learning rate 

coefficient ri, however, this might result in high oscillations that may cause the algorithm to miss the 

global minimum of the network error. BrainMaker Professional Version 3.1, the neural network 

software that was used for this study includes a heuristic learning rate option which incorporates 

simple heuristics to dynamically adjust r] during training. The heuristic learning rate option starts 

training with a large r| of 1.0 and reduces r| by a factor of 0.5, when the network error starts to 

fluctuate. Another limitation of the backpropagation algorithm is that it may be trapped in local 

minimum rather than the global minimum for the error function. But with heuristic learning rate 

algorithm large r| can skip the local minimum to another point on the error surface, while small ti 

can be used to go deeper in the valley of the global minimum. 

Use of a momentum factor a is another procedure for improving the training speed of the 

backpropagation algorithm. The momentum factor is usually set to 0.9, adjusting the momentum 

factor has not been found to improve prediction performance (Pao 1989; BrainMaker 1993). The 

heuristic learning rate, and a momentum factor of 0.9 were used during training of all of the neural 

network models developed in this study. Training was stopped when the average squared error for 

the network converged, except for two of the neural network models described in Section 2.7.6. 
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2.7.3 Number of Hidden Units and Pruning 

Number of hidden units is another parameter that needs to be decided before training can start. If 

too many hidden units are used the neural network may have a poor prediction (generalization) 

performance, however, if too few hidden units are used the neural network model may not have 

enough parameters to identify the mapping function. Defining the number of hidden units is highly 

problem dependent. Kolmogorov's Mapping Neural Network Existence Theorem states that any 

continuous function can be implemented with one hidden layer network structure using 2n+] hidden 

units; where n represents the number of input units (Kolmogorov 1957; Nielsen 1989). Useof2n+l 

hidden units was also recommended by Caudill (1991). 

2n+l units were used for the initial neural network models of all the four tasks. However 2n+l 

units might be too many for certain tasks, which could result in a poor network prediction 

performance. One approach to decrease the number of parameters used in the neural network model 

is to decrease the number of hidden units. A similar approach is to remove the network connections 

which are not significantly contributing to the neural network model. The removal of hidden units or 

connections to decrease the number of parameters used in the neural network model is called 

pruning. 

Le Cun (1989) discussed the importance of reducing the number of free parameters in a neural 

network to increase its likelihood of correct generalization without reducing the size of the network. 

Sietsma and Dow (1991) have studied generalization capabilities of different network configurations. 

Their experiments showed that networks (with input patterns that were not corrupted by noise) with 

fewer hidden units led to better generalization than the networks with more hidden units. 

The number of hidden units for the second neural network models of each of the four tasks were 

reduced to n+1 from 2n+l. Prediction performance for the second set of neural network models 

were compared with the prediction performance of the first set of neural network models to 
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determine if there was improvement. The number of hidden units were reduced further for the third 

model if there was a possibility of improvement in the prediction performance. 

2.7.4 Direct Connection Between Input and Output Units 

Direct connections between input and output units can be made in a neural network, in addition 

to the connections between input and hidden units, and hidden and output units. If a linear transfer 

function is used in the output units, the final neural network model can represent the dependent 

variables as linear and non-linear combinations of the independent variables. This may improve 

prediction performance of the neural network. 

BrainMaker, the neural network software used for this study does not directly allow direct 

connections between input and output units. A program in Visual Basic was developed and was 

linked with BrainMaker to be able make direct connections between input and output units. The 

code for the program developed and used is given in the Appendix. 

Direct connections with input and output units were experimented for concrete pouring with the 

use of the program developed (Section 2.7.6). Because the prediction performance of the neural 

network model with direct connections was not better than the prediction performance of the neural 

network model without direct connections for concrete pouring, neural networks with direct 

connections were not experimented for the tasks other than concrete pouring. 

2.7.5 Adding Noise to Training Data 

Adding random noise to training data is another technique that may improve prediction 

performance of the neural network model. Siestma and Dow (1991) experimented adding random 

noise to the input data and, concluded for their data set that adding noise improved the ability of a 

network to recognize representatives of the classes which were not in the training set. But 
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Lawrence (1993) argued that adding noise to a very noisy data set such as financial forecasting data 

may worsen the prediction performance of the neural network. 

Adding noise to the training data was experimented with concrete pouring data. The closeness of 

fit and prediction performance of the neural network model trained, without noise added data, was 

better than the closeness of fit and prediction performance of the neural network trained, with noise 

added data, for concrete pouring. Adding noise to data of other tasks were not experimented because 

several characteristics of these data sets including level of variation were similar to the 

characteristics of concrete pouring data. 

2.7.6 Neural Network Models for Concrete Pouring 

The neural network models for concrete pouring included six input variables that were included 

in the final regression model for the task. These variables were quantity (q), number of 

workers (n), temperature (t), and the variables associated with the job type; column and slab (cs), 

slab pump (u), and wall(w). The initial neural network model for concrete pouring; model NP-1, had 

13 (2n+l) hidden units. The measures for comparison of closeness of fit and prediction performance 

were calculated as described in section 2.6 (Table 2.16). Next the number of hidden units were 

reduced to 7 (n+1) to obtain model NP-2. It was observed that the loss in closeness of fit was not 

very significant when the number of hidden units were reduced to 7; so the number of units were 

further reduced to 4 (n/2+1). The neural network model with 4 hidden units (NP-3) had a better 

prediction performance than the neural network with 7 hidden units. A random noise with gaussion 

distribution (mean zero, standard deviation 0.05) was added to the input data of the next neural 

network NP-4 during training. The average squared error of the model NP-4 did not converge as 

smoothly as the previous neural networks, because of the noise disruptions to the input data. 
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Table 2.16. Comparison of Neural Network Models for Concrete Pouring 

Closeness of Fit Prediction 
Performance 

Model R- MSE MAPE MSE MAPE Hidden 
Units 

Noise Number 
of Runs 

NP-1 .656 1.82 69.7 4.83 89.1 13 none 1291 
NP-2 .591 2.II 72.2 7 none 1106 
NP-3(NP) .587 2.12 70.5 3.67 76.8 4 none 1209 
NP-4 .521 2.27 73.7 4.34 85.3 4 0.05 1000 
NP-5 .506 2.55 61.2 4.54 75.6 4 none 100 

Training of NF-4 was stopped at run number 1000, when a reasonable convergence was achieved. 

Prediction performance of NP-4 was worse than the prediction performance of NP-3; adding noise to 

input data did not improve generalization. 

The final neural network for concrete pouring; NP-5, had direct connections between input and 

output units, in addition to the connections between input and hidden, and hidden and output units. 

The neural network had four hidden units like NP-3 and NP-4. Training for NP-5 was very slow 

because of the Visual Basic code added to BrainMaker to be able to make the direct connections. 

Executing BrainMaker commands from Visual Basic resulted in several Windows screen updates, 

which slowed the training. Due to slow training the number of runs were limited to 100. However 

100 runs may be sufficient because most of the learning for models NP 1-4 (Figure 2.15a) took place 

in the first 100 runs. Direct connection between input and output units did not improve the 

prediction performance of model NP-3. Model NP-3 was selected as the final neural network model 

for concrete pouring. 
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2.7.2 Neural Network Models for Formwork, Concrete Finishing and Granular Fill 

Two different neural network models were trained for each of the formwork, concrete finishing 

and granular fill tasks. The initial neural network models had 2n+] hidden units, and the second 

neural networks had n+1 hidden units. The input variables for the models were the same variables 

that were used in the final regression models of the tasks. The neural network for formwork with 

three hidden units (NF-2) had better prediction performance than the one with five hidden units (NF-

1). NF-2, therefore was selected as the final neural network model for concrete pouring (Table 2.17). 

However, for concrete finishing, and granular fill tasks neural network models with 2n+l hidden 

units (NT-l, NG-1) had better prediction performance than the neural network models with n+1 

hidden units. The neural network model with five hidden units for concrete finishing and, the neural 

network model with seven hidden units for granular fill were selected as the final neural network 

models. 

Table 2.17. Neural Network Models for Formwork, Concrete Finishing, and Granular Fill 

Closeness of Fit Prediction Performance 
Model R2 MSE MAPE MSB MAPE Input Hidden Number 

Variables Units of Runs 

NF-1 .464 16.51 62.2 25.37 76.8 5 1146 
NF-2(NF) .428 17.63 65.6 24.84 71.6 q,n 3 1149 

NT-l (NT) .545 5801 55.4 16796 102.1 q.t 5 1625 
NT-2 .483 6614 59.4 21534 116.9 q>t 3 1538 

NG-IG^G) .809 1674 33.9 3755 72.5 q.n^P 7 896 
NG-2 .769 2027 42.9 3975 76.9 q,n,P 4 983 
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CHAPTER 3. RESULTS 

3.1 Model Comparison 

The final regression models and neural network models developed in Chapter-2 were compared 

with the average production rate, and factor models in the model comparison stage. The average 

production rate model is a practical approach to predict production rate which has been used by 

several contractors (Sonmez, 1992). The average production rate method is similar to the 

adjustments factors method described in Section 1.3, however, in average production rate method, 

only job type factor is used for adjustments. The average production rate model suggests use of 

average production rate values for different job types to predict the production rate. The average 

production rate model of concrete pouring (AP) that was used for comparison had the following 

form: 

where; PR(P) was the predicted production rate for concrete pouring in cy/hours; c=l if the job type 

was column, c=0 otherwise; s=l if job type was slab, s=0 otherwise; w=l if job type was wall, w=0 

otherwise; j, was the average production rate for column job type; jj was the average production rate 

for slab job type; j, was the average production rate for wall job type. 

The average production rate model for formwork (AF) was similar to model AP, and was in the 

following form: 

where; PR(F) was the predicted production rate for formwork in sf/hours; c=l if the job type was 

column, c=0 otherwise; b=l if job type was grade beam, b=0 otherwise; w=l if job type was wall, 

w=0 otherwise; j I was the average production rate for column job type; jj was the average 

production rate for grade beam job type; jj was the average production rate for wall job type. 

PR(P)=j,C+j2S+j3W (3.1) 

PR(F)=j|C+j,b+j3W (3.2) 
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Average production rate models for concrete finishing and granular fill included only one job 

types, because the data of the tasks were limited to one job type. The average production rate model 

for concrete finishing (AT) had the following form: 

PR(T)=j (3.3) 

where; PR(T) was the predicted production rate for concrete finishing in sf/hours, and j was the 

average production rate for concrete finishing. The average production rate model for granular fill 

(AG) had the following form; 

PR(G)=j (3.4) 

where; PT(G) was the predicted production rate for granular fill in sf/hours, and j was the average 

production rate for granular fill. 

Factor models that were similar to the model 1.4 were the next set of models that were compared 

with the final neural network and regression models. Although model 1.4 was developed for 

masonry construction, it was suggested that same methodology could be used to model other labor 

intensive tasks (Sanders and Thomas, 1993). Data of temperature, humidity, number of workers, 

work (pour) method, and job type factors were available from the factors included in model 1.4. The 

factor model developed for concrete pouring (FP) was in the following form: 

PR(P) = a + SPijj + (ou + Z0i(th)j + Xn 
i=i i=i (3.5) 

where; PR(P) was the predicted production rate for concrete pouring in cy/hours; a was the 

regression constant; j,=l if job type was slab, j,=0 if job type was column or wall; j2=l if job type 

was wall, j2=0 if job type was column or slab; u=l if concrete pump was present, u=0 otherwise; 

th,=l if temperature(t) < 40 (F) and relative humidity (h) < 45 (%), thi=0 otherwise; th2=l if 40 < t 

< 80 and h < 45, th2=0 otherwise ; th3=l if t > 80 and h < 45, th3=0 otherwise; th4=l if t <40 and 

45 < h < 80; th4=0 otherwise; th5=l if t > 80 and 45 < h < 80, th5=0 otherwise; th5=l if t < 40 and h 

> 80, th6=0 otherwise; th7=l if 40 < t < 80 and h > 80, th7=0 otherwise; th8=l if t >80 and h > 80, 
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thg=0 otherwise (Sanders and Thomas, 1993); n is the number of workers; Pj, co. 9j, X were the 

regression coefficients. 

The factor model for formwork (FF) was similar to model FP and was in the following the form: 

PR(F) = a + SPiii + S0i(th)| + X,n 
i=i i=i (3.6) 

where; PR(F) was the predicted production rate for formwork; ji=l if job type was grade beam, ji=0 

if job type was column or wall; j2=l if job type was wall, j2=0 if job type was column or grade beam, 

rest of the terms were same as the equation 3.5. Factor models for concrete finishing (FT) and 

granular fill (FG) were similar to previous models and were in the following form: 

PR(T) = a + S0i(th.)i + Xn 
i=i (3.7) 

PR(G) = a + I0i(th)i + Xn 
(3.8) 

where PR(T) was the predicted production rate for concrete finishing in sf/hours; PR(G) was the 

predicted production rate for granular fill in sf/hours. 

Data of tasks did not include all of the nine temperature humidity levels defined. The terms 

associated with the temperature and humidity levels which were not included in the data were 

dropped from the factor models. 

The closeness of fit and prediction performance values for the average production rate and factor 

models were calculated by the procedure described in Section 2.6. The final regression and neural 

network models developed for concrete pouring, formwnrk, and granular fill were superior to the 

factor, and average production rate models developed for the tasks, in terms of closeness of fit and 

prediction performance (Table 3.1). The regression model (RP) and neural network model (NP) for 
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Table 3.1. Comparison of the Models 

Closeness of Fit Prediction Performance 
Task Model R2 MSE MAPE MSE MAPE 

Concrete AF .175 4.26 100.4 5.52 105.5 
Pouring FP .281 3.71 88.2 5.53 110.6 

RP* .569 2.22 61.3 3.96 71.7 
NP .587 2.12 70.5 3.67 76.8 

Formwork AF .080 28.34 91.6 71.65 110.6 
FF .117 27.20 89.7 76.85 150.3 
RF* .427 17.64 61.8 21.04 68.1 
NF .428 17.63 65.6 24.84 71.6 

Concrete AT .000 12758 102.0 16820 118.3 
Finishing FT .320 8675 80.1 17827 126.3 

RT .301 8920 69.5 18831 107.6 
NT* .545 5801 55.4 16796 102.1 

Granular AG .000 8735 125.7 13917 180.6 
Fill FG .016 8593 128.2 20500 219.6 

RG* .783 1894 33.6 2881 49.6 
NG .769 2027 42.9 3975 76.9 

* was selected as the final model. 

concrete pouring were very close in terms of closeness of fit and prediction performance, but 

regression model was selected as the final model because it was more parsimonious. Regression 

model for formwork (RF) had a slightly better prediction performance that the neural network model 

(NF). Concrete finishing was the only task among the four tasks in which the average production 

rate and factor models were close to the regression and neural network models in terms of closeness 

of fit, and prediction performance. However neural network model (NT) which had the best 

closeness of fit, and prediction performance among the four models was selected as the final model 

for concrete finishing. The regression model for granular fill had the best closeness of fit and 
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prediction performance among the four models, and was selected as the final model. Average 

production rate and factor models for granular fill had a very poor closeness of fit, and prediction 

performance compared to the regression and neural network models. 

3.2 Sensitivity Analysis of the Models 

At the final stage of model comparison a sensitivity analysis was performed, to compare how the 

effect of a factor was quantified by the final regression and neural network models. To perform 

sensitivity analysis first the minimum, maximum and the average values of the factors for each of the 

tasks were determined. The values of each factor were then varied one at a time, while holding the 

values of the other factors at their mean value. The values were varied between minimum and the 

maximum values of the factor, and generally 25 values were used. For each value production rates 

were calculated by the regression and neural network models. The plots of the sensitivity analysis 

are given in Figures 3.1 to 3.10. 

The sensitivity analysis of the factors for concrete pouring were performed for three different job 

types that were included in the final regression (RP), and neural network models (NP). Sensitivity 

analysis of the neural network model indicated that the rate of increase in the production rate of 

concrete pouring due to increase in quantity, with concrete pump, was not same as the rate of 

increase without concrete pump (Figures 3.1a-c). This relation was not included in the regression 

model RG-3, which was being considered for concrete pouring. An interaction term q*u was added 

to the model RP-3 to obtain model RP. The interaction term improved model RP-3 in terms of 

closeness of fit and prediction performance (Table 2.9). 

Increase in quantity also resulted in an increase in production rate for formwork, concrete 

finishing and granular fill tasks. However the rates of increase for different tasks were not same. 

The rate of increase for concrete finishing was less than the rate of increase for the other tasks. 
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The increase in production rate due to increase in the level quantity could be related to work 

complexity and repetition. Jobs with bulk quantities (higher quantity levels) are generally less 

complex than the jobs with fewer quantities, which may result in a higher production rate. Jobs with 

fewer quantities may also require a higher equipment, and material preparation time per unit 

quantity, than the jobs with bulk quantities. The crew may as well, become more familiar with the 

task as the amount of quantities completed for the task increases. 

Number of workers was the next factor that sensitivity analysis was performed. Production rate 

decreased as the number of workers increased for concrete pouring, formwork, and granular fill 

tasks. However the rates of decrease in production rate due to increase in the number of workers 

were not same for the tasks. The decrease in production rate due to increase in number of workers 

could be related to turnover rate, and overcrowding. The description of the number of workers factor 

was given in Section 2.2. A large value of crew size will mean a large value for the number of 

workers, but opposite of the relation is not always true. A large value of number of workers may 

also indicate a high turnover rate. 

Crew size was included in the factor model 1.4 which was developed by Sanders and Thomas. 

The model also suggested that productivity decreased as crew size increased. However, the rate of 

decrease in productivity due to number of workers that was suggested by the regression and neural 

network models was higher than the rate of decrease suggested by the factor model 1.4 due to crew 

size. This may be because the turnover rate, which is also believed to be a negative productivity 

factor was also reflected in the number of workers factor. 

Temperature was another factor that was included in the regression, and neural network models 

of concrete pouring, and concrete finishing. The sensitivity analysis for temperature indicated that 

productivity improved as temperature increased. But there were limited data points for the regions 

where temperature was less than 20 °F, or more than 80 °F. The relation between temperature and 

productivity suggested by the final regression, and neural network models generally agreed with the 
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relation suggested by the previous weather models given in Section 1.5. But the suggested decrease 

in productivity at the high temperature levels was not observed because there were very few data 

points at the high temperature levels (80-110 °F). The rate of increase in productivity due to 

temperature for concrete finishing was higher than the rate of increase for concrete pouring. The rate 

of increase for concrete finishing was also higher than the rate suggested by the NECA. Grimm-

Wagner. and Koehn-Brown models, but less than the rate suggested by the Thomas-Yiakouimis 

model. 

Humidity, another weather related factor was not identified as a factor significantly influencing 

productivity of the four tasks studied. The precipitation factor, however, improved the model for the 

granular fill. The regression and neural network models of granular fill suggested that production 

rate decreased as the amount of precipitation increased. 
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CHAPTER 4. CONCLUSIONS 

Research conducted to date on construction labor productivity usually has focused on the effect 

of a single factor while neglecting the effects of the other factors. Factor model was the only model 

that focused on quantification of the effect of multiple factors. It was suggested that the factor 

modeling methodology which was developed for masonry construction could also be used for other 

tasks. However the factor modeling methodology had several limitations. 

The modeling methodology defined in this study for productivity modeling of labor intensive 

construction tasks, is an improvement over the factor modeling methodology in the way it addresses 

the following three issues. The first issue is that the methodology includes a stage that factor 

modeling methodology lacks, in which the factors influencing productivity are identified. The 

effects of factors on productivity for different tasks may not be same. It is important to include only 

the factors that contribute to the model of a task to achieve good prediction performance. It is also 

important not to be limited to the factors included in the factor model. There may be several factors 

that are not included in the factor model, but may have potential to improve the productivity model 

for a task. All of the factors that data are available should be considered for the data identification 

stage. The second issue of improvement is the methodology presented suggests use of parsimonious 

models which is not considered in the factor modeling methodology. Factor modeling methodology 

suggests use of eight binary terms for temperature and humidity, instead of few continuos variables. 

The principle of parsimony is important because, in practice parsimonious models generally produce 

better forecasts. Third issue of improvement is that the modeling methodology suggested includes a 

procedure to compare prediction performance. In factor modeling methodology only closeness of fit 

is used to compare different models. However a good closeness of fit does not always result in a 
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good prediction performance. Use of closeness of fit as the only performance measure may lead to 

models that fit data better, than the models that forecast better. 

The modeling methodology suggested, factor modeling methodology and the average production 

rate method were used to model four different tasks. The models developed by the modeling 

procedure suggested in this study was better than the models developed by the average production 

rate method, and the factor modeling methodology, in terms of closeness of fit and prediction 

performance. The prediction performances of the models developed for concrete pouring, formwork, 

and granular fill, by the methodology presented in this study were significantly better than the 

prediction performances of the models developed by the factor modeling methodology. This 

significant difference verifies the importance of the three issues discussed for modeling. 

This study included data, and models of multiple factors for multiple tasks. Factor model was 

developed for masonry construction only. The regression and neural network models developed in 

this study suggested that the effects of factors on productivity and, the rate of effects may not be 

same for different tasks. Therefore, this study suggests that use of one common productivity model 

for different tasks is not sufficient. Productivity models of the different tasks should be studied 

individually, although there may be similarities between the effects of the some factors on different 

labor intensive tasks. 

Use of neural networks for construction labor productivity was also explored in this study. 

Neural networks with their mapping capabilities helped the overall modeling process. Neural 

networks have shown potential to identify the effects of the factors, especially when interactions and 

non linear relations were present. 

The final models given could be improved by including other factors, for which data were not 

available in this study. The modeling methodology described could also be used for labor intensive 

tasks, other than concrete pouring, formwork, concrete finishing and granular fill. Project related 

factors, such as project type, design features, project team could also be studied by the described 
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methodology. However, this study requires data from several different types of projects. A more 

extended study may also include international factors. An international construction productivity 

study may help to establish international labor productivity norms. 

Productivity models which are capable of explaining variations due to several factors will 

improve accuracy of labor cost estimates, and activity duration forecasts. Better understanding of 

construction productivity will also lead to more realistic expectations and better planning decisions 
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'** This program makes direct connection between input and output units, in addition to tiie 
connections between input and hidden, and hidden and output units, for BrainMalcer Professional. 

'*** Define Variables 
Dim N, NV, C, FC, V, LNNT, HU, WL, WTS, FACTN, FFACTN, X, LF, LCWT, WT, NRUN, CO, 
FF, TF, CT 
NV = 6 

NRUN= 100 
ReDim FCT(1000, NV) As Single 
ReDim OUT(1000, NV) As Single 
ReDim NET(1000) As String 
ReDim NWTS(NV) 
LF = Chr(13) 

'*** Read Fact File 
Open "c:\vb\cf.fct" For Input As #1 ' Open file 
Line Input #1, N 
Line Input #1, N 
C = 1 

Do While Not(EOF(l)) 
IfEOF(l)GoTo 10 

Input #1, FCT(C, 1), FCT(C, 2), FCT(C, 3), FCT(C, 4), FCT(C, 5), FCT(C, 6) 
IfEOF(l)GoTo 10 

Input #l,OUT(C, 1) 
C = C+ 1 

IfEOF(l)GoTo 10 
Input #1, N 

Loop 
10 Close #1 
FC = C - 1 
C= 1 

'*** Create Necassary Fact Files 
Do While C <= FC 

FF = CStr(C) & ".fct" 
TF = "C:\VB\C.FCT" 
FileCopy TF, FF 
Open FF For Append As #5 
Seek #5, 20 
Print #5, LF 
Print #5, FCT(C, 1), FCT(C, 2), FCT(C, 3), FCT(C, 4), FCT(C, 5), FCT(C, 6) 
Print #5, OUT(C, 1) 
Close #5 
C = C+ 1 

Loop 
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'*** Make Direct Connections Between Input and Output Units 
CO= 1 

Do While CO <= NRUN 
C= 1 

Do While C <= FC 
V= 1 

Open "c:\vb\c.net" For Input As #3 
Do While Not (EOF(3)) 

Input #3, NET(V) 
WTS = Left(NET(V), 7) 
V = V+ 1 

LNNT = V - 1 

Loop 
Close #3 
V= 1 

Do While V <= LNNT 
WTS = Left(NET(V), 7) 
If WTS = "weights" Then 

WL = V 
V = LNNT + 1 

End If 
V = V + 1 

Loop 

V= 1 

Do While V <= NV 
FACTN = FCT(C, V) 
If FACTN = 0 Then FACTN = .0001 
If FACTN = 1 Then FACTN = .9999 
FFACTN = Log(l / FACTN - 1) 
If FFACTN = 0 Then FFACTN = .0001 
NWTS(V) = 1 / FFACTN 
TFCT = 1 / (1 + Exp(l / NWTS(V))) 
NET(WL+1) ="#.#### #.#### #.#### #.#### #.#### #.#### 

Left(CStr(NWTS(V)),6) 
V = V+ 1 

WL = WL + 1 

Loop 

NET(5) = "filename trainfacts C:\VBV' & CStr(C) & ".FCT" 
Open "c:\vb\c.net" For Output As #4 
V= 1 
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Do While V <= LNNT 
Print #4, NET(V) 
V = V+ 1 

Loop 

Close 
AppActtive = "Brianmaicer Professional" 
SendKeys "%F", True 
SendKeys "R", True 
SendKeys "c.net". True 
SendKeys True 
SendKeys "%0", True 
SendKeys "T", True 
SendKeys "%F", True 
SendKeys "S", True 
SendKeys True 
SendKeys "Y", True 
IfCT = 5Then 

SendKeys "%F", True 
SendKeys "X", True 

End If 
V= 1 

Do While V <= LNNT 
NET(V) ="" 
V = V + 1 

Loop 
C = C+ 1 

Loop 
CO = CO + 1 

Loop 

End 


	1996
	Construction labor productivity modeling with neural networks and regression analysis
	Rifat Sonmez
	Recommended Citation


	 

